{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 01 Introduction to sampling distributions"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%html\n",
""
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
"import itertools\n",
"import numpy as np\n",
"import pandas as pd\n",
"from pandas import Series, DataFrame\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy import stats, special"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[khanacademy](https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/what-is-sampling-distribution/v/introduction-to-sampling-distributions?modal=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"df = DataFrame({\"#'s picks\": list(itertools.product([1, 2, 3], repeat=2))})"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
"df['X'] = [np.mean(i) for i in df[\"#'s picks\"]]"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" #'s picks | \n",
" X | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" (1, 1) | \n",
" 1.0 | \n",
"
\n",
" \n",
" 1 | \n",
" (1, 2) | \n",
" 1.5 | \n",
"
\n",
" \n",
" 2 | \n",
" (1, 3) | \n",
" 2.0 | \n",
"
\n",
" \n",
" 3 | \n",
" (2, 1) | \n",
" 1.5 | \n",
"
\n",
" \n",
" 4 | \n",
" (2, 2) | \n",
" 2.0 | \n",
"
\n",
" \n",
" 5 | \n",
" (2, 3) | \n",
" 2.5 | \n",
"
\n",
" \n",
" 6 | \n",
" (3, 1) | \n",
" 2.0 | \n",
"
\n",
" \n",
" 7 | \n",
" (3, 2) | \n",
" 2.5 | \n",
"
\n",
" \n",
" 8 | \n",
" (3, 3) | \n",
" 3.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" #'s picks X\n",
"0 (1, 1) 1.0\n",
"1 (1, 2) 1.5\n",
"2 (1, 3) 2.0\n",
"3 (2, 1) 1.5\n",
"4 (2, 2) 2.0\n",
"5 (2, 3) 2.5\n",
"6 (3, 1) 2.0\n",
"7 (3, 2) 2.5\n",
"8 (3, 3) 3.0"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAARbElEQVR4nO3da6xlZX3H8e/PYRSsVlLnNJJh8GgltmpEcIoYe6FeEiQKacUW06gQdRovUdM2cSQNtiZ90aTV1mLFIRCBWquitaOMMRBt1ReCB8p9sB17YwopR2wZEYQO/ffFXtOe7tkzZ80wa2/2eb6fZMd1efba/8c17N9Zl/2sVBWSpHY9YdYFSJJmyyCQpMYZBJLUOINAkhpnEEhS446adQGHasOGDbW4uDjrMiRprtxwww3fq6qFSevmLggWFxdZWlqadRmSNFeS/MuB1nlqSJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDVusCBIcnSS65PcnOT2JL83oc2Tknw6ya4k1yVZHKoeSdJkQx4RPAy8vKpOAl4EnJHktLE2bwH+o6qeA3wY+IMB65EkTTBYENTIA93s+u41/vCDs4HLu+mrgFckyVA1SZL2N+g1giTrktwE3AtcU1XXjTXZCNwFUFV7gfuBp0/YzpYkS0mWlpeXhyxZekwWt17N4tarZ12GdEgGDYKqerSqXgQcD5ya5AVjTSb99b/fI9OqaltVba6qzQsLE4fKkCQdpqncNVRV/wn8DXDG2KrdwCaAJEcBTwO+P42aJEkjQ941tJDk2G76GOCVwJ1jzbYDb+6mzwG+Wj5EWZKmasjRR48DLk+yjlHgfKaqvpTkg8BSVW0HLgWuTLKL0ZHAuQPWI0maYLAgqKpbgJMnLL9wxfSPgNcPVYMkaXX+sliSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGjdYECTZlORrSXYmuT3Jeya0OT3J/Ulu6l4XDlWPJGmyowbc9l7gt6rqxiRPBW5Ick1V3THW7htV9ZoB65AkHcRgRwRVdU9V3dhN/wDYCWwc6vMkSYdnKtcIkiwCJwPXTVj90iQ3J/lykucf4P1bkiwlWVpeXh6wUklqz+BBkOQpwOeA91bVnrHVNwLPrKqTgD8FvjBpG1W1rao2V9XmhYWFYQuWpMYMGgRJ1jMKgU9W1efH11fVnqp6oJveAaxPsmHImiRJ/9+Qdw0FuBTYWVUfOkCbZ3TtSHJqV899Q9UkSdrfkHcNvQx4I3Brkpu6ZRcAJwBU1cXAOcDbk+wFHgLOraoasCZJ0pjBgqCqvglklTYXARcNVYMkaXX+sliSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjBguCJJuSfC3JziS3J3nPhDZJ8pEku5LckuSUoeqRJE121IDb3gv8VlXdmOSpwA1JrqmqO1a0eTVwYvd6CfCx7n8lSVMy2BFBVd1TVTd20z8AdgIbx5qdDVxRI98Cjk1y3FA1SZL2N5VrBEkWgZOB68ZWbQTuWjG/m/3DgiRbkiwlWVpeXh6qTM3I4tarWdx69azL0Aruk7YMHgRJngJ8DnhvVe0ZXz3hLbXfgqptVbW5qjYvLCwMUaYkNWvQIEiynlEIfLKqPj+hyW5g04r544G7h6xJkvT/DXnXUIBLgZ1V9aEDNNsOvKm7e+g04P6qumeomiRJ+xvyrqGXAW8Ebk1yU7fsAuAEgKq6GNgBnAnsAh4Ezh+wHknSBL2CIMkLquq2Q9lwVX2TydcAVrYp4J2Hsl1J0pHV99TQxUmuT/KOJMcOWpEkaap6BUFV/Rzw64wu7C4l+Yskrxq0MknSVPS+WFxV/wD8DvA+4BeBjyS5M8mvDFWcJGl4vYIgyQuTfJjRr4NfDry2qn6mm/7wgPVJkgbW966hi4BLgAuq6qF9C6vq7iS/M0hlkqSp6BsEZwIPVdWjAEmeABxdVQ9W1ZWDVSdJGlzfawTXAsesmH9yt0ySNOf6BsHRVfXAvplu+snDlCRJmqa+QfDDlQ+NSfJi4KGDtJckzYm+1wjeC3w2yb4B4Y4Dfm2YkiRJ09QrCKrq20l+Gnguo2Ej7qyq/xq0MknSVBzKoHM/Cyx27zk5CVV1xSBVSZKmpu+gc1cCPwXcBDzaLS7AIJCkOdf3iGAz8LxutFBJ0hrS966h24BnDFmIJGk2+h4RbADuSHI98PC+hVV11iBVSZKmpm8Q/O6QRUiSZqfv7aN/m+SZwIlVdW2SJwPrhi1NkjQNfYehfhtwFfDxbtFG4AtDFSVJmp6+F4vfyehh9Hvgfx9S85NDFSVJmp6+QfBwVT2ybybJUYx+RyBJmnN9g+Bvk1wAHNM9q/izwBeHK0uSNC19g2ArsAzcCvwGsIPR84slSXOu711D/83oUZWXDFuOJGna+o419E9MuCZQVc8+4hVJkqbqUMYa2udo4PXATxzsDUkuA14D3FtVL5iw/nTgr4F/6hZ9vqo+2LMeSdIR0usaQVXdt+L1b1X1x8DLV3nbJ4AzVmnzjap6UfcyBCRpBvqeGjplxewTGB0hPPVg76mqrydZPOzKJElT0ffU0B+tmN4L/DPwq0fg81+a5GbgbuC3q+r2SY2SbAG2AJxwwglH4GMlSfv0vWvolwb47BuBZ1bVA0nOZDRkxYkH+PxtwDaAzZs3+0M2STqC+p4a+s2Dra+qDx3qB1fVnhXTO5L8WZINVfW9Q92WJOnwHcpdQz8LbO/mXwt8HbjrcD84yTOAf6+qSnIqo2sP9x3u9iRJh+dQHkxzSlX9ACDJ7wKfraq3HugNST4FnA5sSLIb+ACwHqCqLgbOAd6eZC/wEHCuj8KUpOnrGwQnAI+smH8EWDzYG6rqDausvwi4qOfnS5IG0jcIrgSuT/JXjH5h/MvAFYNVJUmamr53Df1+ki8DP98tOr+q/m64siRJ09J39FGAJwN7qupPgN1JnjVQTZKkKer7qMoPAO8D3t8tWg/8+VBFSZKmp+8RwS8DZwE/BKiqu1lliAlJ0nzoGwSPdLd2FkCSHxuuJEnSNPUNgs8k+ThwbJK3AdfiQ2okaU3oe9fQH3bPKt4DPBe4sKquGbQySdJUrBoESdYBX6mqVwJ++UvSGrPqqaGqehR4MMnTplCPJGnK+v6y+EfArUmuobtzCKCq3j1IVZKkqekbBFd3L0nSGnPQIEhyQlX9a1VdPq2CJEnTtdo1gi/sm0jyuYFrkSTNwGpBkBXTzx6yEEnSbKwWBHWAaUnSGrHaxeKTkuxhdGRwTDdNN19V9eODVidJGtxBg6Cq1k2rEEnSbBzK8wgkSWuQQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMGC4IklyW5N8ltB1ifJB9JsivJLUlOGaoWSdKBDXlE8AngjIOsfzVwYvfaAnxswFokSQcwWBBU1deB7x+kydnAFTXyLeDYJMcNVY8kabJZXiPYCNy1Yn53t2w/SbYkWUqytLy8PJXiHu8Wt17N4lYfGietxv9WVjfLIMiEZROHuq6qbVW1uao2LywsDFyWJLVllkGwG9i0Yv544O4Z1SJJzZplEGwH3tTdPXQacH9V3TPDeiSpSas9mOawJfkUcDqwIclu4APAeoCquhjYAZwJ7AIeBM4fqhZJ0oENFgRV9YZV1hfwzqE+X5LUj78slqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGDRoESc5I8p0ku5JsnbD+vCTLSW7qXm8dsh5J0v6OGmrDSdYBHwVeBewGvp1ke1XdMdb001X1rqHqkCQd3JBHBKcCu6rqH6vqEeAvgbMH/DxJ0mEYMgg2AnetmN/dLRv3uiS3JLkqyaZJG0qyJclSkqXl5eUhapWkZg0ZBJmwrMbmvwgsVtULgWuByydtqKq2VdXmqtq8sLBwhMuUpLYNGQS7gZV/4R8P3L2yQVXdV1UPd7OXAC8esB5J0gRDBsG3gROTPCvJE4Fzge0rGyQ5bsXsWcDOAeuRJE0w2F1DVbU3ybuArwDrgMuq6vYkHwSWqmo78O4kZwF7ge8D5w1VjyRpssGCAKCqdgA7xpZduGL6/cD7h6xBknRw/rJYkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wYNgiRnJPlOkl1Jtk5Y/6Qkn+7WX5dkcch6JEn7GywIkqwDPgq8Gnge8IYkzxtr9hbgP6rqOcCHgT8Yqh5J0mRDHhGcCuyqqn+sqkeAvwTOHmtzNnB5N30V8IokGbAmSdKYVNUwG07OAc6oqrd2828EXlJV71rR5rauze5u/rtdm++NbWsLsKWbfS7wncMsawPwvVVbzQf78vi0VvqyVvoB9mWfZ1bVwqQVRx1+Paua9Jf9eOr0aUNVbQO2PeaCkqWq2vxYt/N4YF8en9ZKX9ZKP8C+9DHkqaHdwKYV88cDdx+oTZKjgKcB3x+wJknSmCGD4NvAiUmeleSJwLnA9rE224E3d9PnAF+toc5VSZImGuzUUFXtTfIu4CvAOuCyqro9yQeBparaDlwKXJlkF6MjgXOHqqfzmE8vPY7Yl8entdKXtdIPsC+rGuxisSRpPvjLYklqnEEgSY1bk0HQY2iL85IsJ7mpe711FnWuJsllSe7tfm8xaX2SfKTr5y1JTpl2jX316MvpSe5fsU8unHaNfSTZlORrSXYmuT3Jeya0mYv90rMv87Jfjk5yfZKbu7783oQ2czGkTc++HNnvsKpaUy9GF6a/CzwbeCJwM/C8sTbnARfNutYeffkF4BTgtgOsPxP4MqPfY5wGXDfrmh9DX04HvjTrOnv04zjglG76qcDfT/j3NRf7pWdf5mW/BHhKN70euA44bazNO4CLu+lzgU/Puu7H0Jcj+h22Fo8I+gxtMReq6usc/HcVZwNX1Mi3gGOTHDed6g5Nj77Mhaq6p6pu7KZ/AOwENo41m4v90rMvc6H7//qBbnZ99xq/E2YuhrTp2Zcjai0GwUbgrhXzu5n8j/t13WH7VUk2TVg/D/r2dV68tDsc/nKS58+6mNV0pxZOZvQX20pzt18O0heYk/2SZF2Sm4B7gWuq6oD7par2AvcDT59ulf306Ascwe+wtRgEfYat+CKwWFUvBK7l//5KmDe9huiYEzcyGgvlJOBPgS/MuJ6DSvIU4HPAe6tqz/jqCW953O6XVfoyN/ulqh6tqhcxGsXg1CQvGGsyN/ulR1+O6HfYWgyCVYe2qKr7qurhbvYS4MVTqu1I6zOMx1yoqj37DoeragewPsmGGZc1UZL1jL44P1lVn5/QZG72y2p9maf9sk9V/SfwN8AZY6vmbkibA/XlSH+HrcUgWHVoi7HztWcxOjc6j7YDb+ruUjkNuL+q7pl1UYcjyTP2na9Nciqjf5v3zbaq/XU1XgrsrKoPHaDZXOyXPn2Zo/2ykOTYbvoY4JXAnWPN5mJImz59OdLfYUOOPjoT1W9oi3cnOQvYy+gvgvNmVvBBJPkUo7s2NiTZDXyA0YUjqupiYAejO1R2AQ8C58+m0tX16Ms5wNuT7AUeAs59PP5HCrwMeCNwa3cOF+AC4ASYu/3Spy/zsl+OAy7P6IFYTwA+U1VfymyHtDlcffpyRL/DHGJCkhq3Fk8NSZIOgUEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGvc/tzdSnFE0TUQAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df['X'].plot(kind='hist',\n",
" bins=np.arange(0.5, 4, 0.5),\n",
" width=0.02)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"# np.random.sample, random.sample"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}